Lattice points in rational ellipsoids

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Lattice Points of Rational Polyhedra

The generating function F (P ) = ∑ α∈P∩ZN xα for a rational polytope P carries all essential information of P . In this paper we show that for any positive integer n, the generating function F (P, n) of nP = {nx : x ∈ P} can be written as F (P, n) = ∑ α∈A Pα(n)x, where A is the set of all vertices of P and each Pα(n) is a certain periodic function of n. The Ehrhart reciprocity law follows autom...

متن کامل

Discrete Truncated Powers And Lattice Points In Rational Polytope ∗

Discrete truncate power is very useful for studying the number of nonnegative integer solutions of linear Diophantine equations. In this paper, some detail information about discrete truncated power is presented. To study the number of integer solutions of linear Diophantine inequations, the generalized truncated power and generalized discrete truncated power are defined and discussed respectiv...

متن کامل

A Closer Look at Lattice Points in Rational Simplices

We generalize Ehrhart’s idea ([Eh]) of counting lattice points in dilated rational polytopes: Given a rational simplex, that is, an n-dimensional polytope with n+ 1 rational vertices, we use its description as the intersection of n+ 1 halfspaces, which determine the facets of the simplex. Instead of just a single dilation factor, we allow different dilation factors for each of these facets. We ...

متن کامل

A Combinatorial Property of Points anf Ellipsoids

For each d-1 there is a constant Ca > 0 such that any finite set X c R a contains a subset YcX, IYI<-[~d(d+3)J +1 having the following property: if E = Y is an ellipsoid, then IE nXt-> c~JXl.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2009

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2008.09.051